Continuité : limites avec racine n-ieme

0
15K

calculer les limites suivantes :

 

  • \(\lim _{x \rightarrow+\infty} \sqrt{x^2-1}-2 x\)
  • \(\lim _{x \rightarrow+\infty} \sqrt{x^2-1}-x\)
  • \(\lim _{x \rightarrow+\infty} \sqrt{4 x^2-x-1}-2 x+1\)
  • \(\lim _{x \rightarrow+\infty} \sqrt[3]{x^3-1}-2 x\)

CORRECTION

Essayer de faire l'exercice avant de voir la correction

 

 

 

 

 

\(\begin{aligned} \lim _{x \rightarrow+\infty} \sqrt{x^2-1}-2 x &=\lim _{x \rightarrow+\infty} \sqrt{x^2\left(1-\frac{1}{x^2}\right)}-2 x \\ &=\lim _{x \rightarrow+\infty}|x| \sqrt{1-\frac{1}{x^2}}-2 x \\ &=\lim _{x \rightarrow+\infty} x \sqrt{1-\frac{1}{x^2}}-2 x \\ &=\lim _{x \rightarrow+\infty} x\left(\sqrt{1-\frac{1}{x^2}}-2\right) \\ &=-\infty \end{aligned}\)


\(\begin{aligned} \lim _{x \rightarrow+\infty} \sqrt[3]{x^3-1}-2 x &=\lim _{x \rightarrow+\infty} \sqrt{x^3\left(1-\frac{1}{x^3}\right)}-2 x \\ &=\lim _{x \rightarrow+\infty} x \sqrt{1-\frac{1}{x^3}}-2 x \\ &=\lim _{x \rightarrow+\infty} x\left(\sqrt{1-\frac{1}{x^3}}-2\right) \\ &=-\infty \end{aligned}\)


\(\begin{aligned} \lim _{x \rightarrow+\infty} \sqrt{x^2-1}-x &=\lim _{x \rightarrow+\infty} \frac{\left(\sqrt{x^2-1}-x\right)\left(\sqrt{x^2-1}+x\right)}{\sqrt{x^2-1}+x} \\ &=\lim _{x \rightarrow+\infty} \frac{\sqrt{x^2-1}-x^2}{\sqrt{x^2-1}+x} \\ &=\lim _{x \rightarrow+\infty} \frac{x^2-1-x^2}{\sqrt{x^2-1}+x} \\ &=\lim _{x \rightarrow+\infty} \frac{-1}{\sqrt{x^2-1}+x} \\ &=0 \end{aligned}\)


\(\lim _{x \rightarrow+\infty} \sqrt{4 x^2-x-1}-2 x+1\)

\(=\lim _{x \rightarrow+\infty} \frac{\left(\sqrt{4 x^2-x-1}-2 x\right)\left(\sqrt{4 x^2-x-1}+2 x\right)}{\sqrt{4 x^2-x-1}+2 x}+1\)

\(=\lim _{x \rightarrow+\infty} \frac{4 x^2-x-1-4 x^2}{\sqrt{4 x^2-x-1}+2 x}+1\)
\(=\lim _{x \rightarrow+\infty} \frac{-x-1}{\sqrt{x^2\left(4-\frac{1}{x}-\frac{1}{x^2}\right)}+2 x}+1\)
\(=\lim _{x \rightarrow+\infty} \frac{-x-1}{x \sqrt{4-\frac{1}{x}-\frac{1}{x^2}}+2 x}+1\)
\(=\lim _{x \rightarrow+\infty} \frac{-x-1}{x \sqrt{4-\frac{1}{x}-\frac{1}{x^2}}+2 x}+1\)
\(=\lim _{x \rightarrow+\infty} \frac{x\left(-1-\frac{1}{x}\right)}{x\left(\sqrt{4-\frac{1}{x}-\frac{1}{x^2}}+2\right)}+1\)
\(=\lim _{x \rightarrow+\infty} \frac{-1-\frac{1}{x}}{\sqrt{4-\frac{1}{x}-\frac{1}{x^2}}+2}+1\)

\(=-\frac{1}{4}+1\)
\(=\frac{3}{4}\)

 

Love
1
Search
Categories
Read More
Mathématiques 3 AC
Racines Carrées : Exercice 10
Calculer : \(3 \sqrt{5} \cdot 4 \cdot \sqrt{5}\)\(3 \sqrt{5}+4 \cdot \sqrt{5}\)\(-2 \sqrt{11}...
By Guahouane Abdessamiä 2022-10-27 11:34:01 0 11K
Other
La boîte à merveilles - Résumé chapitre par chapitre
Chapitre I Deux éléments déclenchent le récit : la nuit et la...
By Français 1 Bac 2023-11-23 11:41:09 0 6K
Other
Analyse de la boîte à merveilles
Les déclencheurs du récit dans la boîte à merveilles La Boîte...
By Français 1 Bac 2023-11-23 11:23:35 0 6K
Mathématiques 2 BSE
Continuité : limites avec racine n-ieme
calculer les limites suivantes :   \(\lim _{x \rightarrow+\infty} \sqrt{x^2-1}-2 x\)...
By Guahouane Abdessamiä 2022-10-31 11:30:57 0 15K
Mathématiques 3 AC
Racines carrées usuelles
By Guahouane Abdessamiä 2022-10-26 17:26:08 0 10K