Continuité : limites avec racine n-ieme

0
15K

calculer les limites suivantes :

 

  • \(\lim _{x \rightarrow+\infty} \sqrt{x^2-1}-2 x\)
  • \(\lim _{x \rightarrow+\infty} \sqrt{x^2-1}-x\)
  • \(\lim _{x \rightarrow+\infty} \sqrt{4 x^2-x-1}-2 x+1\)
  • \(\lim _{x \rightarrow+\infty} \sqrt[3]{x^3-1}-2 x\)

CORRECTION

Essayer de faire l'exercice avant de voir la correction

 

 

 

 

 

\(\begin{aligned} \lim _{x \rightarrow+\infty} \sqrt{x^2-1}-2 x &=\lim _{x \rightarrow+\infty} \sqrt{x^2\left(1-\frac{1}{x^2}\right)}-2 x \\ &=\lim _{x \rightarrow+\infty}|x| \sqrt{1-\frac{1}{x^2}}-2 x \\ &=\lim _{x \rightarrow+\infty} x \sqrt{1-\frac{1}{x^2}}-2 x \\ &=\lim _{x \rightarrow+\infty} x\left(\sqrt{1-\frac{1}{x^2}}-2\right) \\ &=-\infty \end{aligned}\)


\(\begin{aligned} \lim _{x \rightarrow+\infty} \sqrt[3]{x^3-1}-2 x &=\lim _{x \rightarrow+\infty} \sqrt{x^3\left(1-\frac{1}{x^3}\right)}-2 x \\ &=\lim _{x \rightarrow+\infty} x \sqrt{1-\frac{1}{x^3}}-2 x \\ &=\lim _{x \rightarrow+\infty} x\left(\sqrt{1-\frac{1}{x^3}}-2\right) \\ &=-\infty \end{aligned}\)


\(\begin{aligned} \lim _{x \rightarrow+\infty} \sqrt{x^2-1}-x &=\lim _{x \rightarrow+\infty} \frac{\left(\sqrt{x^2-1}-x\right)\left(\sqrt{x^2-1}+x\right)}{\sqrt{x^2-1}+x} \\ &=\lim _{x \rightarrow+\infty} \frac{\sqrt{x^2-1}-x^2}{\sqrt{x^2-1}+x} \\ &=\lim _{x \rightarrow+\infty} \frac{x^2-1-x^2}{\sqrt{x^2-1}+x} \\ &=\lim _{x \rightarrow+\infty} \frac{-1}{\sqrt{x^2-1}+x} \\ &=0 \end{aligned}\)


\(\lim _{x \rightarrow+\infty} \sqrt{4 x^2-x-1}-2 x+1\)

\(=\lim _{x \rightarrow+\infty} \frac{\left(\sqrt{4 x^2-x-1}-2 x\right)\left(\sqrt{4 x^2-x-1}+2 x\right)}{\sqrt{4 x^2-x-1}+2 x}+1\)

\(=\lim _{x \rightarrow+\infty} \frac{4 x^2-x-1-4 x^2}{\sqrt{4 x^2-x-1}+2 x}+1\)
\(=\lim _{x \rightarrow+\infty} \frac{-x-1}{\sqrt{x^2\left(4-\frac{1}{x}-\frac{1}{x^2}\right)}+2 x}+1\)
\(=\lim _{x \rightarrow+\infty} \frac{-x-1}{x \sqrt{4-\frac{1}{x}-\frac{1}{x^2}}+2 x}+1\)
\(=\lim _{x \rightarrow+\infty} \frac{-x-1}{x \sqrt{4-\frac{1}{x}-\frac{1}{x^2}}+2 x}+1\)
\(=\lim _{x \rightarrow+\infty} \frac{x\left(-1-\frac{1}{x}\right)}{x\left(\sqrt{4-\frac{1}{x}-\frac{1}{x^2}}+2\right)}+1\)
\(=\lim _{x \rightarrow+\infty} \frac{-1-\frac{1}{x}}{\sqrt{4-\frac{1}{x}-\frac{1}{x^2}}+2}+1\)

\(=-\frac{1}{4}+1\)
\(=\frac{3}{4}\)

 

Love
1
Search
Categories
Read More
Mathématiques 2 BSE
Continuité : Fonction réciproque - Exercice
On considère la fonction \(f\) définie sur \([2,+\infty[\) par :  \(f(x)=x-2...
By Guahouane Abdessamiä 2022-11-01 09:40:58 1 15K
Mathématiques 2 BSE
Représentations paramétriques d'un plan dans l'espace
L'espace est muni d'un repère \(( O ; \vec{i} ; \vec{j} ; \vec{k})\). Comment...
By Guahouane Abdessamiä 2024-04-20 20:17:49 0 1K
Other
Bibliothèque de Primaire | مكتبة التعليم الابتدائي
سيكون محتوى هذه الصفحة متاحا قريبا ، مرحبا بكم معنا  
By Modérateur Platforme 2023-01-11 20:33:34 0 13K
Mathématiques 2 BSE
Limite \(\lim\limits _{x \rightarrow 1} \frac{\sqrt{x+3}-\sqrt[3]{3 x+5}}{1-\tan \left(\frac{\pi}{4} x\right)}\)
Si on remplace directement , nous allons obtenir une F.I \(\left(\frac{0}{0}\right)\). Afin...
By Guahouane Abdessamiä 2023-10-23 11:25:58 0 9K
Mathématiques 1 BS Ex
(1 Bac Sc) سلسلة تمارين المنطق
  التمريــن 1     أكتب باستعمال المكممات العبارات التالية ثم ادرس قيمة حقيقتها....
By Guahouane Abdessamiä 2022-10-26 14:58:56 0 19K