Représentations paramétriques d'un plan dans l'espace

0
1K

L'espace est muni d'un repère \(( O ; \vec{i} ; \vec{j} ; \vec{k})\).

Comment déterminer une représentation paramétrique du plan passant par trois points non alignés A, B, C ?

Il suffit d'utiliser la condition d'appartenance d'un point à ce plan .

Par exemple : on veut déterminer une représentation paramétrique du plan passant par les points :
\( A(2 ;-1,-3), B(0 ; 1 ; 4), C(-3 ; 0 ; 0) \).

On a :

\(M\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \in(A B C) \)
\(\Leftrightarrow \exists(a, b) \in \mathbb{R}^2: \overrightarrow{A M}=\overrightarrow{A B}+b \overrightarrow{A C}\) 

analytiquement on a :
\[ \left(\begin{array}{l} x-2 \\ y+1 \\ z+3 \end{array}\right)=a\cdot\left(\begin{array}{l} -2 \\ 2 \\ 7 \end{array}\right)+b\cdot\left(\begin{array}{l} -5 \\ 1 \\ 3 \end{array}\right) \]

C'est-à-dire :

\(\left\{\begin{array}{l}x-2=-2 a -5 b \\ y+1=2 a+b \\ z+3=7 a+3 b\end{array}\right.\)

D'où :

\(\boxed{\left\{\begin{array}{l}x=2-2 a-5 b \\ y=-1+2 a+b \\ z=-3+7 a+3 b\end{array}\right.}\)

Le dernier système est une représentation paramétrique du plan \(( ABC )\), c'est-à-dire que les coordonnées \(( x ; y ; z )\) d'un point quelconque du plan dépendent de paramètres qui sont ici \(a\) et \(b\), mais il existe d'autres représentations paramétriques pour ce plan.

Inversement, si vous connaissez une représentation paramétrique de ce type du plan, vous pouvez en déduire les coordonnées d'un point de ce plan ainsi que les coordonnées de deux vecteurs directeurs de ce plan :

Par exemple, soit le plan définie par la représentation paramétrique suivante :

\((P)\left\{\begin{array}{l}x=3+2a-4b \\ y=2+a-b \\ z=5a-5b\end{array}\right.\)

On a :

\((P)\left\{\begin{array}{l}x=3+2a-4b \\ y=2+1a-1b \\ z=0+5a-5b\end{array}\right.\)

Alors, on peut en déduire que c'est un plan passant par le point A et de vecteurs directeurs \(\vec{u}\) et \(\vec{v}\) :

\(A\left(\begin{array}{l}3 \\ 2 \\ 0\end{array}\right) \quad \vec{u}\left(\begin{array}{l}2 \\ 1 \\ 5\end{array}\right) \quad \vec{v}\left(\begin{array}{l}-4 \\ -1 \\ -5\end{array}\right)\)

 

 

 

 

Search
Categories
Read More
Mathématiques 3 AC
Racines Carrées : Exercice 3
Compléter les égalités suivantes :1) \(\sqrt{\cdots}=25\)2)...
By Guahouane Abdessamiä 2022-10-27 10:35:18 0 10K
Mathématiques 3 AC
Racines Carrées : Exercice 4
Simplifier les expressions suivantes : \(\sqrt{24}=\sqrt{\ldots \cdot 6}=\sqrt{\ldots} \cdot...
By Guahouane Abdessamiä 2022-10-27 10:37:01 0 10K
Mathématiques 3 AC
Simplifications des racines carrés
On a : \(\sqrt{12}=\sqrt{4 \times 3}\)\(\sqrt{12}=\sqrt{4} \times \sqrt{3}\)\(\sqrt{12}=2...
By Guahouane Abdessamiä 2022-10-29 23:44:22 0 14K
Mathématiques 3 AC
Racines Carrées : Exercice 6
Ecrire les nombres selon la forme  a \( \sqrt{b} \)  où a et b deux entiers...
By Guahouane Abdessamiä 2022-10-27 10:53:07 0 10K
PAID POST