Représentations paramétriques d'un plan dans l'espace

0
1KB

L'espace est muni d'un repère \(( O ; \vec{i} ; \vec{j} ; \vec{k})\).

Comment déterminer une représentation paramétrique du plan passant par trois points non alignés A, B, C ?

Il suffit d'utiliser la condition d'appartenance d'un point à ce plan .

Par exemple : on veut déterminer une représentation paramétrique du plan passant par les points :
\( A(2 ;-1,-3), B(0 ; 1 ; 4), C(-3 ; 0 ; 0) \).

On a :

\(M\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \in(A B C) \)
\(\Leftrightarrow \exists(a, b) \in \mathbb{R}^2: \overrightarrow{A M}=\overrightarrow{A B}+b \overrightarrow{A C}\) 

analytiquement on a :
\[ \left(\begin{array}{l} x-2 \\ y+1 \\ z+3 \end{array}\right)=a\cdot\left(\begin{array}{l} -2 \\ 2 \\ 7 \end{array}\right)+b\cdot\left(\begin{array}{l} -5 \\ 1 \\ 3 \end{array}\right) \]

C'est-à-dire :

\(\left\{\begin{array}{l}x-2=-2 a -5 b \\ y+1=2 a+b \\ z+3=7 a+3 b\end{array}\right.\)

D'où :

\(\boxed{\left\{\begin{array}{l}x=2-2 a-5 b \\ y=-1+2 a+b \\ z=-3+7 a+3 b\end{array}\right.}\)

Le dernier système est une représentation paramétrique du plan \(( ABC )\), c'est-à-dire que les coordonnées \(( x ; y ; z )\) d'un point quelconque du plan dépendent de paramètres qui sont ici \(a\) et \(b\), mais il existe d'autres représentations paramétriques pour ce plan.

Inversement, si vous connaissez une représentation paramétrique de ce type du plan, vous pouvez en déduire les coordonnées d'un point de ce plan ainsi que les coordonnées de deux vecteurs directeurs de ce plan :

Par exemple, soit le plan définie par la représentation paramétrique suivante :

\((P)\left\{\begin{array}{l}x=3+2a-4b \\ y=2+a-b \\ z=5a-5b\end{array}\right.\)

On a :

\((P)\left\{\begin{array}{l}x=3+2a-4b \\ y=2+1a-1b \\ z=0+5a-5b\end{array}\right.\)

Alors, on peut en déduire que c'est un plan passant par le point A et de vecteurs directeurs \(\vec{u}\) et \(\vec{v}\) :

\(A\left(\begin{array}{l}3 \\ 2 \\ 0\end{array}\right) \quad \vec{u}\left(\begin{array}{l}2 \\ 1 \\ 5\end{array}\right) \quad \vec{v}\left(\begin{array}{l}-4 \\ -1 \\ -5\end{array}\right)\)

 

 

 

 

Rechercher
Catégories
Lire la suite
CONTENU PAYANT
Mathématiques 2 BSE
Limite \(\lim\limits _{x \rightarrow 1} \frac{\sqrt{x+3}-\sqrt[3]{3 x+5}}{1-\tan \left(\frac{\pi}{4} x\right)}\)
Si on remplace directement , nous allons obtenir une F.I \(\left(\frac{0}{0}\right)\). Afin...
Par Guahouane Abdessamiä 2023-10-23 11:25:58 0 9KB
Mathématiques 2 BSE
Sommaire des Maths 2 BSE BIOF
Cher élèves, dans cet article, nous avons rassemblé toutes les publications...
Par Mathématiques 2 BSE BIOF 2023-02-28 21:43:18 0 12KB
Autre
Bibliothèque de Primaire | مكتبة التعليم الابتدائي
سيكون محتوى هذه الصفحة متاحا قريبا ، مرحبا بكم معنا  
Par Modérateur Platforme 2023-01-11 20:33:34 0 13KB
Mathématiques 2 BSE
Continuité : Fonction Réciproque - Exercices
On considère la fonction \(f\) définie sur \([2,+\infty[\) par \(f(x)=x-2...
Par Guahouane Abdessamiä 2022-10-27 11:46:22 0 13KB